diff --git a/RBBGCMuso/DESCRIPTION b/RBBGCMuso/DESCRIPTION index 748f386..0e7bbcb 100644 --- a/RBBGCMuso/DESCRIPTION +++ b/RBBGCMuso/DESCRIPTION @@ -17,7 +17,8 @@ Imports: Rcpp, magrittr, dplyr, - ggplot2 + ggplot2, + rmarkdown LinkingTo: Rcpp Maintainer: Roland Hollo's RoxygenNote: 6.0.1 diff --git a/RBBGCMuso/NAMESPACE b/RBBGCMuso/NAMESPACE index fb30c3a..28aba9c 100644 --- a/RBBGCMuso/NAMESPACE +++ b/RBBGCMuso/NAMESPACE @@ -12,6 +12,7 @@ export(musoMapping) export(musoMonte) export(musoRandomizer) export(musoSensi) +export(paramSweepŰ) export(plotMuso) export(rungetMuso) export(setupMuso) diff --git a/RBBGCMuso/R/musoSensi.R b/RBBGCMuso/R/musoSensi.R index 12bf097..6898612 100644 --- a/RBBGCMuso/R/musoSensi.R +++ b/RBBGCMuso/R/musoSensi.R @@ -25,7 +25,7 @@ musoSensi <- function(monteCarloFile = NULL, settings = NULL, parametersFromFile=FALSE, inputDir = "./", - outLoc = "./calib", + outLoc = "./calib", iterations = 30, preTag = "mont-", outputType = "moreCsv", @@ -56,11 +56,13 @@ musoSensi <- function(monteCarloFile = NULL, varNames<- colnames(M)[1:npar] w <- lm(y~M)$coefficients[-1] Sv <- apply(M,2,var) - overalVar <- sum(Sv^2*w^2) + overalVar <- sum(Sv*w^2) S=numeric(npar) + for(i in 1:npar){ - S[i] <- ((w[i]^2*Sv[i]^2)/overalVar)*100 + S[i] <- ((w[i]^2*Sv[i])/(overalVar))*100 } + S <- round(S) names(S)<-varNames write.csv(file = outputFile, x = S) diff --git a/RBBGCMuso/man/musoSensi.Rd b/RBBGCMuso/man/musoSensi.Rd index 5c06675..7e14ea5 100644 --- a/RBBGCMuso/man/musoSensi.Rd +++ b/RBBGCMuso/man/musoSensi.Rd @@ -4,10 +4,11 @@ \alias{musoSensi} \title{musoSensi} \usage{ -musoSensi(monteCarloFile = NULL, parameters, settings = NULL, - inputDir = "./", outLoc = "./calib", iterations = 30, - preTag = "mont-", outputType = "moreCsv", fun = mean, varIndex = 1, - outputFile = "sensitivity.csv", plotName = "sensitivity") +musoSensi(monteCarloFile = NULL, parameters = NULL, settings = NULL, + parametersFromFile = FALSE, inputDir = "./", outLoc = "./calib", + iterations = 30, preTag = "mont-", outputType = "moreCsv", fun = mean, + varIndex = 1, outputFile = "sensitivity.csv", + plotName = "sensitivity.png", plotTitle = "Sensitivity", dpi = 300) } \arguments{ \item{monteCarloFile}{If you run musoMonte function previously, you did not have to rerun the monteCarlo, just provide the preservedEpc.csv file with its path. If you do not set this parameter, musoSensi will fun the musoMonte function to get all of the information.}