RBBGCMuso/RBBGCMuso/R/#musoRand.R#
Roland Hollós 483935670f big changes
2018-11-27 04:32:32 +01:00

173 lines
5.2 KiB
Plaintext

#' musoRand
#'
#' This funtion samples uniformly from the choosen parameters of the BiomeBGC-Muso model, which parameters are constrained by the model logic.
#' @author Roland Hollos
#' @param parameters This is a dataframe (heterogen data-matrix), which first column is the name of the parameters, the second is a numeric vector of the rownumbers of the given variable in the input-file, the last two column consist the endpont of the parameter-ranges, where the parameters will be randomized.
#' @param constrains This is a matrics wich specify the constrain rules for the sampling. Further informations coming son.
#' @param iteration The number of sample-s. It is adviced to use at least 3000 iteration, because it is generally fast and it can be subsampled later at any time.
#' @export
musoRand <- function(parameters, constrains = NULL, iterations=3000){
if(!is.null(constrains)){
constMatrix <- constrains
}
parameters <- parameters[,-1]
constMatrix <- constMatrix[,-1]
depTableMaker <- function(constMatrix,parameters){
parameters <- parameters[order(parameters[,1]),]
constMatrix[constMatrix[,"INDEX"] %in% parameters[,1],c(5,6)]<-parameters[,c(2,3)]
logiConstrain <- (constMatrix[,"GROUP"] %in% constMatrix[constMatrix[,"INDEX"] %in% parameters[,1],"GROUP"] &
(constMatrix[,"GROUP"]!=0)) | ((constMatrix[,"INDEX"] %in% parameters[,1]) & (constMatrix[,"GROUP"] == 0))
constMatrix<-constMatrix[logiConstrain,]
constMatrix <- constMatrix[order(apply(constMatrix[,7:8],1,function(x){x[1]/10+abs(x[2])})),]
constMatrix
}
genMat0 <- function(dep){
numberOfVariable <- nrow(dep)
G <- rbind(diag(numberOfVariable), -1*diag(numberOfVariable))
h <- c(dependences[,5], -1*dependences[,6])
return(list(G=G,h=h))
}
genMat1 <- function(dep, N){
## Range <- sapply(list(min,max),function(x){
## x(as.numeric(rownames(dep)))
## }) It is more elegant, more general, but slower
Range <- (function(x){
c(min(x), max(x))
})(as.numeric(dep[,"rowIndex"]))
numberOfVariables <- nrow(dep)
G<- -1*diag(numberOfVariables)
for(i in 1:numberOfVariables){
if(dep[i,4]!=0){
G[i,dep[i,4]] <- 1
}
}
G<-G[dep[,4]!=0,]
if(Range[1]==1){
G<-cbind(G,matrix(ncol=(N-Range[2]),nrow=nrow(G),data=0))
} else{
if(Range[2]==N){
G<-cbind(matrix(ncol=(Range[1]-1),nrow=nrow(G),data=0),G)
} else {
G <- cbind(matrix(ncol=(Range[1]-1),nrow=nrow(G),data=0),G,matrix(ncol=(N-Range[2]),nrow=nrow(G),data=0))
}
}
return(list(G=G,h=rep(0,nrow(G))))
}
genMat2 <- function(dep, N){
G <- rep(1,nrow(dep))
Range <- (function(x){
c(min(x), max(x))
})(as.numeric(dep[,"rowIndex"]))
if(Range[1]==1){
G<-c(G, numeric(N-Range[2]))
} else{
if(Range[2]==N){
G<-c(numeric(Range[1]-1), G)
} else {
G <- c(numeric(Range[1]-1), G, numeric(N-Range[2]))
}
}
G <- t(matrix(sign(dep[2,4])*G))
h <- abs(dep[1,4])
return(list(G=G,h=h))
}
genMat3 <- function(dep, N){
Range <- (function(x){
c(min(x), max(x))
})(as.numeric(dep[,"rowIndex"]))
E <- rep(1,nrow(dep))
if(Range[1]==1){
E<-c(E, numeric(N-Range[2]))
} else{
if(Range[2]==N){
E<-c(numeric(Range[1]-1), E)
} else {
E <- c(numeric(Range[1]-1), E, numeric(N-Range[2]))
}
}
E <- t(matrix(E))
f <- dep[1,4]
return(list(E=E,f=f))
}
applyRandTypeG <- function(dep,N){
type <- unique(dep[,"TYPE"])
minR <- min(dep[,"rowIndex"])
maxR <- max(dep[,"rowIndex"])
switch(type,
invisible(Gh <- genMat1(dep, N)),
invisible(Gh <- genMat2(dep, N)))
return(Gh)
}
applyRandTypeE <- function(dep,N){
type <- unique(dep[,"TYPE"])
minR <- min(dep[,"rowIndex"])
maxR <- max(dep[,"rowIndex"])
switch(-type,
stop("Not implemented yet"),
stop("Not implemented yet"),
invisible(Ef <- genMat3(dep, N)))
return(Ef)
}
dependences <- depTableMaker(constMatrix, parameters)
dependences <- cbind(dependences,1:nrow(dependences))
colnames(dependences)[ncol(dependences)] <- "rowIndex"
numberOfVariable <- nrow(dependences)
nonZeroDeps<-dependences[dependences[,"TYPE"]!=0,]
if(nrow(nonZeroDeps)!=0){
splitedDeps<- split(nonZeroDeps,nonZeroDeps[,"GROUP"])
Gh <- list()
Ef <- list()
for(i in 1:length(splitedDeps)){
print(splitedDeps[[i]][1,"TYPE"])
if(splitedDeps[[i]][1,"TYPE"]>0){
Gh[[i]]<-applyRandTypeG(splitedDeps[[i]],nrow(dependences))
} else {
Ef[[i]] <- applyRandTypeE(splitedDeps[[i]],nrow(dependences))
}
}
Gh0<- genMat0(dependences)
G <- do.call(rbind,lapply(Gh,function(x){x$G}))
G<- rbind(Gh0$G,G)
h <- do.call(c,lapply(Gh,function(x){x$h}))
h <- c(Gh0$h,h)
E <- do.call(rbind,lapply(Ef,function(x){x$E}))
f <- do.call(c,lapply(Ef,function(x){x$f}))
randVal <- suppressWarnings(limSolve::xsample(G=G,H=h,E=E,F=f,iter = iterations))$X
} else{
Gh0<-genMat0(dependences)
randVal <- suppressWarnings(limSolve::xsample(G=Gh0$G,H=Gh0$h, iter = iterations))$X
}
results <- list(INDEX =dependences$INDEX, randVal=randVal)
return(results)
}