RBBGCMuso/docs/CIRM/kichen_sink.R
2022-04-04 16:08:49 +02:00

46 lines
1.5 KiB
R

start_intervals <- read.csv("1/Martonvasar_maize.set",skip=1,stringsAsFactors=FALSE)
indices <- which(start_intervals[,3] != start_intervals[,4])
png("kichen_sink.png",width=30,height=30,res=600,units = "cm")
par(mfrow=c(5,4))
for(i in indices){
ranges <- start_intervals[i,3:4]
optimes <- numeric(10)
for(j in 1:10){
base_table <- read.csv(paste(j,"Martonvasar_maize_after_tree.set",sep="/"),
skip=1, stringsAsFactors=FALSE)
ranges <- rbind(ranges,base_table[i,3:4])
optimes[j] <- unlist(readRDS(paste0(j,"/results.RDS"))$parameters[start_intervals[indices,1]][indices==i])
}
plot(ranges[,1],11:1,type="l",xlim=range(ranges),main=base_table[i,1],xlab="",ylab="iterations",yaxt="n")
axis(2,at=11:1,labels = 0:10)
points(optimes,10:1)
lines(ranges[,2],11:1,type="l")
}
dev.off()
postscript("kichen_sink.eps",paper="a4")
par(mfrow=c(5,4))
for(i in indices){
ranges <- start_intervals[i,3:4]
optimes <- numeric(10)
for(j in 1:10){
base_table <- read.csv(paste(j,"Martonvasar_maize_after_tree.set",sep="/"),
skip=1, stringsAsFactors=FALSE)
ranges <- rbind(ranges,base_table[i,3:4])
optimes[j] <- unlist(readRDS(paste0(j,"/results.RDS"))$parameters[start_intervals[indices,1]][indices==i])
}
plot(ranges[,1],11:1,type="l",xlim=range(ranges),main=base_table[i,1],xlab="",ylab="iterations",yaxt="n")
axis(2,at=11:1,labels = 0:10)
points(optimes,10:1)
lines(ranges[,2],11:1,type="l")
}
dev.off()